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ABSTRACT

This paper describes a new methodology and associated theoretical
analysis for rapid and accurate extraction of activation regions from
functional MRI data. Most fMRI data analysis methods in use today
adopt a hypothesis testing approach, in which the BOLD signals in
individual voxels or clusters of voxels are compared to a threshold.
In order to obtain statistically meaningful results, the testing must
be limited to very small numbers of voxels/clusters or the threshold
must be set extremely high. Furthermore, voxelization introduces
partial volume effects (PVE), which present a persistent error in the
localization of activity that no testing procedure can overcome. We
abandon the multiple hypothesis testing approach in this paper, and
instead advocate a new approach based on set estimation. Rather
then attempting to control the probability of error, our method aims
to control the spatial volume of the error. To do this, we view the ac-
tivation regions as level sets of the statistical parametric map (SPM)
under consideration. The estimation of the level sets, in the presence
of noise, is then treated as a statistical inference problem. We pro-
pose a level set estimator and show that the expected volume of the
error is proportional to the sidelength of a voxel. Since PVEs are un-
avoidable and produce errors of the same order, this is the smallest
error volume achievable. Experiments demonstrate the advantages
of this new theory and methodology, and the statistical reasonability
of controlling the volume of the error rather than the probability of
error.

Index Terms— Magnetic resonance imaging, Signal detection,
Neuroimaging, fMRI

1. FMRI ANALYSIS

First we review the standard hypothesis testing approach used in
most studies today, and we point out the limitations and flaws of
such methods. Then we formulate the fMRI analysis problem as
a level set estimation task, and discuss the virtues of this perspec-
tive. Before moving on, we establish basic notation that will be used
throughout the paper. Let yi, i = 1, . . . , n, denote the elements
of the statistical parameter map (SPM) under consideration, n be-
ing the number of voxels. Elements of the SPM may be t-statistics,
cross-correlation coefficients, z-statistics, or one of a variety of other
measures, as described in [1]; in this paper, for simplicity of presen-
tation, we will assume yi ∈ [−1, 1]. In general, each statistic is
modeled as the sum of a deterministic and stochastic component:

yi = f̄i + εi .
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The deterministic component f̄i is the mean value of yi, and is
viewed as the average of an underlying continuous activation func-
tion over the i-th voxel. The stochastic component εi is assumed to
have a mean value of zero. Assume that the volume of the brain is
embedded into the unit cube [0, 1]3, and that each voxel corresponds
to 1/n of this volume. Let f denote the continuous activation func-
tion defined on [0, 1]3. Then f̄i = n

R
Vi

f(x) dx, where Vi is the

subcube that is the i-th voxel (the factor of n accounts for normal-
ization by the voxel volume).

1.1. Hypothesis Testing for fMRI

Broadly speaking, hypothesis testing procedures are based thresh-
olding the SPM, or functions of it, at a certain level. Points exceed-
ing the threshold are declared as active. In voxel-wise testing, it
is usually assumed that the εi are zero-mean Gaussian errors. In-
active voxels are assumed to have f̄i = 0, and the Gaussian dis-
tribution of εi then provides a principled means for selecting an
appropriate threshold. A Bonferroni correction (BC) or sequential
p-value method can be used to determine a threshold that controls
the family-wise error rate (probability that one or more voxels is
falsely detected) or the false discovery rate (FDR). Because these
both control error rates over large numbers of voxels, the thresholds
they prescribe are extremely conservative; typically very few vox-
els exceed these stringent, albeit statistically sound, thresholds. One
way to circumvent this problem is to perform a much smaller num-
ber of tests, say on a subset of voxels or larger clusters/groups of
voxels [2]. Of course, this may significantly sacrifice the resolution,
or regional specificity, of fMRI analysis. An excellent discussion of
this tradeoff may be found in [3], which also describes a variety of
testing approaches based on the theory of Gaussian fields. Also, we
mention that other alternatives to voxel-based testing have been pro-
posed. For example, [4] uses hypothesis testing based on the wavelet
transform of the SPM to detect activity. This offers another approach
to trading regional specificity in return for enhanced SNR.

Beyond these difficulties associated with hypothesis testing ap-
proaches to fMRI, there is also the error due to partial volume effects
(PVE). PVEs are always present in fMRI and place a limit on the
regional specificity (i.e., accuracy with which activation can be lo-
calized). The localization accuracy is proportional to the sidelength
of a voxel. For example, suppose that a certain voxel contains a
volume of the brain that is activated in one half of the voxel, but
not the other. It is quite possible that the SPM value for this voxel
could exceed a detection threshold, but subsequently inferring that
this implies this entire voxel volume is active is obviously incorrect.
One can only safely say that some part of the voxel volume is active.
Similar problems arise in cluster- and wavelet-based testing.
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1.2. Level Set Estimation for fMRI

In light of the challenges associated with controlling the probability
of error in fMRI, and the fact that even under such control errors in
regional specificity persist at the voxel level due to PVE, we advocate
an alternative to hypothesis testing. The best we can hope for is an
localization error whose volume is proportional to voxel side-length,
so we aim to localize activation to within this accuracy.

The ideal goal of fMRI is to determine the subset of [0, 1]3 where
the activation function f exceeds a certain positive level, indicating
regions where the BOLD response is especially strong.

Aim 1 (Ideal): For a given level γ > 0, determine the level set

Sγ ≡ {x ∈ [0, 1]d : f(x) ≥ γ} ⊂ [0, 1]3.

This is similar in spirit to testing approaches based on the theory
of Gaussian random fields [3, 5]. In those approaches, the SPM is
viewed as a voxelated representation of an underlying continuous
Gaussian field. The function f in our set-up would be the mean of
such a field. Based on the Gaussian field assumption, one can prob-
abilistically characterize the excursion set, which is closely related
to our notion of a level set. The excursion set is a level set of the
SPM, whereas Sγ is the gamma-level set of only the deterministic
component of the SPM.

The ideal aim is unachievable for two reasons. First, the PVE ar-
tifact limits the accuracy of any approach to this problem to n−1/3,
the side-length of a voxel. Second, the stochastic component of the
SPM introduces another source of error. Remarkably, a careful sta-
tistical analysis shows that the effect of the stochastic error can be
controlled to order n−1/3 as well. In anticipation of this, we pose a
second, more useful, aim:

Aim 2 (Practical): For a given level γ > 0, construct an estimator
of the γ-level set, denoted bS, that satisfies the following error bound:

E

h
vol

“
Δ(Sγ , bS)

”i
∝ n−1/3, (1)

where E, above and throughout the paper, denotes the expectation
over the random stochastic errors, vol stands for volume, Sc

γ is the
complement of Sγ , and

Δ(Sγ , bS) ≡ (Sγ ∩ bSc) ∪ (Sc
γ ∩ bS)

is the so-called the symmetric difference between the sets Sγ and bS.

The symmetric difference of two sets is simply the total of all points
included in one set and not the other, and vice-versa. The volume
of this set is the overall error in the estimation of the activation re-
gion(s). Because the level set estimator is a random variable, we
consider the expected value of the volume error. Similar quantifi-
cations of the size of the error can be made in terms of probability,
rather than expectation, but the expectation bound most clearly illus-
trates the performance.

1.3. The Level Set Approach vs. Gaussian Field Approaches

As pointed out above, there is a close connection in the formula-
tion of level set estimation and testing based on Gaussian random
field models. Our main criticism of the latter is that they are based
on a strong assumption about the spatial dependencies in the BOLD
signal, namely that the SPM is a realization of a smooth Gaussian
process. While there is little doubt that dependencies exist, it is very

unclear that a Gaussian process is a reasonable model for them. The
assumed smoothness of the field, W in [3], strongly influences the
shapes, sizes and boundary smoothness of the excursion sets. Even
the best choice of W may not yield excursion sets that are good
models for real activation patterns. The Gaussian field models are
isotropic processes, and thus favor isotropic excursion sets. Actual
activation patterns may be highly non-isotropic. In contrast, the level
set approach assumes only that the boundary of Sγ is lower dimen-
sional (e.g., a two dimensional surface when studying a three dimen-
sional volume). No further assumptions are placed on the shape or
smoothness of the level set.

2. LEVEL SET ACTIVATION DETECTION IN FMRI

2.1. Error metrics

Careful selection of an error metric is the first step in designing an ef-
fective level set estimator. In particular, the method presented in this
paper is designed to minimize the weighted symmetric difference

E(S, Sγ) ≡
Z

Δ(Sγ ,S)

|γ − f(x)|dx. (2)

This is a useful metric for broad classes of activation functions f .
In particular, consider activation functions with f(x) < γmin in
inactive regions and f(x) > γmax in active regions. Note that if
γmin < γ < γmax, then there exist constants c, C > 0 such that
c ≤ |γ − f(x)| ≤ C. It follows that

c vol(Δ(Sγ , S)) ≤
Z

Δ(Sγ ,S)

|γ − f(x)|dx ≤ C vol(Δ(Sγ , S)) ,

and therefore minimizing E(S, Sγ) minimizes the volume of the er-
roneous region, as desired.

The quantity E(S, Sγ) cannot be directly evaluated without
knowledge of Sγ (the level set we wish to estimate.) However,
note that the weighted symmetric difference can be decomposed as
E(S, Sγ) = R(S)−R(Sγ), where

R(S) ≡
Z

γ − f(x)

2

ˆ
I{x∈S} − I{x∈Sc}

˜
dx (3)

and I{A} = 1 if event A is true and 0 otherwise. Thus minimiz-
ing E(S, Sγ) is equivalent to minimizing R(S), since R(Sγ) is a
constant, and the value ofR(S) is independent of Sγ . Furthermore,
R(S) has an empirical counterpart that can be computed from the
SPM:

bRn(S) =
1

n

nX
i=1

γ − yi

2

ˆ
I{xi∈S} − I{xi∈Sc}

˜
. (4)

Note thatR(S) = E

h bRn(S)
i
.

2.2. Estimation via Trees

Building upon the work in [6], we can show that level set formulation
presented above leads to theoretically optimal estimators. In partic-
ular, we propose to estimate the level set of the activation function
f based on the SPM by using a tree-pruning method akin to CART
[7] or dyadic decision trees [8]. Trees are utilized for a couple of
reasons. First, they provide a simple means of generating a spatially
adaptive partition, yielding an automatic data aggregation in regions
estimated to be strictly above or below the γ level. This adaptive
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and automatic aggregation effectively boosts the signal-to-noise ra-
tio. Second, the optimal partition can be computed very rapidly us-
ing a simple bottom-up pruning scheme.

Let Tn denote the collection of all 8-ary trees in three dimen-
sions (8-ary trees are based on recursively partitioning cubic vol-
umes into 8 sub-cubes). For example, consider a 64×64×64 voxel
volume. The voxels represent the limit of the 8-ary partition pro-
cess, generated by a 6 level 8-ary tree (26 = 64). In this example,
n = 643 and the side-length of each voxel is n−1/3 = 1/64 (as-
suming the brain volume is normalized to be the unit cube). Note,
however, that is is not necessary to complete the partitioning process
to the voxel level; using less than 6 levels will result in partition cells
composed of groups of voxels. Moreover, the level of the tree can
vary spatially, yielding smaller cells in certain areas and larger cells
in others. This is what we call a spatially adaptive partition. Spatial
adaptivity is crucial in level set estimation, since ideally we wish to
aggregate the SPM wherever f(x) strictly exceeds or falls below the
target level of γ.

Let π(T ) denote the partition induced on [0, 1]3 by the 8-ary tree
T . Each leaf node of the tree corresponds to a cell of the partition.
A zero or one is assigned to each leaf node of T (equivalently, to
each cell L ∈ π(T )), and the union of leafs with label one form a
set denoted ST . Let |L| denote the volume of the leaf L. Based the
theory of tree-based level set estimators developed in [6], we have
the following result.

Theorem 1 Let

Φn(T ) ≡
X

L∈π(T )

s
2|L|
n

log

„
4n

|L|4/3

«
. (5)

With probability at least 1− 1/n,

R(ST ) ≤ bRn(ST ) + Φn(T ) ∀ T ∈ Tn.

The proof of this theorem utilizes a union bound over the leaves
coupled with Hoeffding’s inequality (a concentration of measure in-
equality for bounded random variables), which bounds the contribu-
tion of the risk from each individual leaf. Theorem 1 shows that the
ideal quantity, R(ST ), that we wish to minimize is upper bounded

by the sum of empirical version bRn(ST ) and Φn(T ), both of which
are easily computed; i.e., althoughR(ST ) requires exact knowledge
of f(x), the upper bound does not. Thus, the set that minimizesbRn(ST ) + Φn(T ) also makesR(ST ) (and hence the volume error)
small with very high probability. Intuitively, we can interpret Φn(T )
as a regularization term which discourages excessively complex par-
titions.

Theorem 1 leads directly to the following level set estimator:

bST = arg min
ST :T∈Tn

n bRn(ST ) + Φn(T )
o

. (6)

In addition, the estimator defined by (6) and (5) is rapidly com-
putable. In fact, a translation-invariant estimator can be computed
in O(n log n) operations [6]. Furthermore, as shown in the follow-
ing section, the estimator is nearly optimal.

2.3. Performance Analysis

Not only does the above framework give us a principled way to select
a level set estimator, but it also allows us to bound the expected error
volume. In particular, we have the following theorem, which also
follows from the work in [6].

Theorem 2 Let bST be as in (6) with Φn(T ) as in (5). Then

E

h
E(bST , Sγ)

i
≤ min

ST :T∈Tn

{E(ST , Sγ) + 2Φn(T )}+
4

n
.

The bound on the expected error in Theorem 2 allows us to bound
the expected volume of the erroneous region (total volume of missed
activation and falsely detected activation). In particular, the follow-
ing theorem shows that for a broad class of functions f , the proposed
method is nearly optimal. Again, assume that the activation function
satisfies f(x) < γmin in inactive regions, f(x) > γmax in active
regions, and γmin < γ < γmax. Furthermore, we assume that the
boundaries of Sγ are two-dimensional surfaces (i.e., the boundary of
a volume is a surface). Under these mild assumptions, we have the
following theorem.

Theorem 3

E

h
vol

“
Δ(bST , Sγ)

”i
∝ E

h
E(bST , Sγ)

i
∝

„
log n

n

«1/3

.

This shows that the expected volume of the error is nearly equal to
the minimum dictated by partial volume effects, n−1/3. The extra
logarithmic factor is relatively negligible. Furthermore, the estima-
tor automatically adapts to the form and extent of the level set, Sγ ,
without prior constraints on shape or size of the activation regions.
The level set estimator is also computationally efficient.

3. IMPROVED ESTIMATION VIA CROSS-VALIDATION

The above theoretical analysis demonstrates that the estimator in (6)
controls the expected volume of the error. However, in practice, be-
cause the regularization term Φn(T ) is based on worst-case analysis
techniques, the resulting level set estimate can be somewhat over-
regularized (i.e. over-smoothed). Attenuating the regularization term
can result in improved performance. It can be shown that choosing
this attenuation factor using a cross-validation procedure both is em-
pirically effective and retains the optimality of the original estimator.

In particular, we assume that we have access to two data sets
or runs collected under the same conditions, and we denote the two
resulting SPMs as {yT

i }n
i=1 for training data and {yV

i }n
i=1 for vali-

dation data. Such data is often available in fMRI studies [2]. For an
attenuation factor λ ∈ [0, 1], we have the estimator

bSλ = arg min
ST :T∈Tn

n bRT
n (ST ) + λΦT

n (T )
o

, (7)

where bRT
n is (4) evaluated using the training data. We then choose

the optimal attenuation λ as bλ = arg minλ∈[0,1]
bRV

n (bSλ), wherebRV
n is (4) evaluated using the validation data, and set the final esti-

mate to be bS = bS
bλ. From here it is possible to derive the following

theorem.

Theorem 4 With probability at least 1− 1/n,

E

h
vol

“
Δ(bST , Sγ)

”i
≤ min

λ∈[0,1]
E

h
E(bSλ, Sγ)

i
+

r
log n

2n
+

1

n

∝
„

log n

n

«1/3

.

Theorem 4 indicates that the error volume of the cross-validated esti-
mator is also near-optimal. The proof of the theorem follows through
a straightforward application of the results in [9].

554



4. EXPERIMENTAL RESULTS

4.1. Simulated Phantom

We first use simulated data to perform our holdout method for pa-
rameter tuning. The phantom consists of regions of different activa-
tion level, representing levels of neurological activity. Additive unit-
variance zero-mean Gaussian noise is used to corrupt this underlying
activity to form our simulated data. The SPM is then computed us-
ing this knownN (0, 1) noise distribution. We compare the level set

estimate bSγ with the true Sγ . In Fig. 1, we compare our results to
those obtained by traditional pre-smoothing and thresholding. We
use a Gaussian smoothing kernel where the smoothing bandwidth of
1.2 voxels FWHM was chosen clairvoyantly via directly minimizing

vol(Δ(Sγ , bS)). For this reason, the performance of this conven-
tional approach will exceed what is possible in practice when the
true Sγ is unknown. We also show a more typical example where
a bandwidth of 3 voxels FWHM is chosen, demonstrating a severe
degradation in performance when one over-smoothes the SPM. Note
that in comparison to simple smoothing and thresholding, our errors
are well-localized along the boundary of the level set, as the the-
ory predicts. Averaging over 100 realizations of the SPM, we have
an average symmetric difference volume of 0.023 using level sets,
0.030 using thresholding with clairvoyant pre-smoothing, and 0.077
using thresholding with a fixed typical amount of pre-smoothing.
This means that our level set estimation procedure outperforms pre-
smoothing and thresholding estimate even with the best clairvoyant
choice of the smoothing bandwidth.

(a) (b) (c)

Fig. 1. Comparison of γ = 0.70 level set estimation, thresholding

with clairvoyant pre-smoothing, and thresholding with typical pre-

smoothing for a simulated phantom study. Red regions are false

positives, blue regions indicate false negatives, their union com-

prises Δ(Sγ , bS). (a) Level set estimate; vol(Δ(Sγ , bS)) = 0.024.

(b) Voxel-wise threshold estimate with clairvoyant pre-smoothing;

vol(Δ(Sγ , bS)) = 0.030. (c) Voxel-wise threshold estimate with

typical pre-smoothing; vol(Δ(Sγ , bS)) = 0.075.

4.2. fMRI Data

We now turn our attention to fMRI data. This data consists of 64×64
axial slices with 122 time samples taken during a finger-tapping ex-
periment. By splitting the data into two temporal halves, we gen-
erate two independent sets of data for the cross-validation method:
the first 61 time samples for training, and the remaining 61 for val-
idation. Shown in Fig. 2 are the results of our holdout procedure
using two different levels of γ. By picking γ, we may examine dif-
ferent levels of activation in fMRI studies. We compare our results
to voxel-wise thresholding with pre-smoothing. We used a Gaussian
smoothing kernel with a 1.2 voxel FWHM, corresponding to the best
choice of bandwidth in the simulated phantom experiment. The de-
tected regions using the proposed level set estimation method show
significantly fewer spurious detected areas compared to conventional
methods, yielding better localization of neural activity.

(a) (b) (c) (d)

Fig. 2. Estimates of neural activation regions. The red regions over-

laid onto the anatomic grayscale image represent the declared activ-

ity. With γ = 0.95: (a) level set estimate, (b) voxel-wise threshold

estimate with pre-smoothing. With γ = 0.90: (c) level set estimate,

(d) voxel-wise threshold estimate with pre-smoothing.

5. REMARKS AND CONCLUSIONS

In this paper, we abandoned standard hypothesis testing fMRI anal-
ysis in favor of a level set approach that aims to control the volume
of the erroneous region. We argued that controlling the error vol-
ume is more natural in light of partial volume effects, which result
in an unavoidable error in any event. The proposed level set estima-
tor produces an estimate of active regions that is guaranteed to have
an error that is commensurate with partial volume effects. In other
words, the error volume, and hence the error in regional specificity,
is controlled to nearly the absolute minimum. One matter that we
have not investigated here is the choice of level, γ. The higher the
level γ, the smaller the level set Sγ . In effect, γ gauges the strength
of the activation in the set Sγ . The selection of γ could be based on
a secondary criterion, such as the false discovery rate. Alternatively,
it may be informative to examine several different level sets. These
sets will be nested, with lower level sets containing higher level sets,
providing a more descriptive view of activation patterns. Our ongo-
ing work aims to address these matters.
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